Machine Leaning Using Python

by TCIL-IT Claim Listing

Machine Leaning Using Python course is offered by TCIL-IT. TCIL-IT Chandigarh is a fastest-emerging company in the IT and telecommunications industry. Being a well accredited company, we have specialized in the field of various industrial training programs.

Price : Enquire Now

Contact the Institutes

Fill this form

Advertisement

TCIL-IT Logo

img Duration

Please Enquire

Course Details

Machine Leaning Using Python course is offered by TCIL-IT. TCIL-IT Chandigarh is a fastest-emerging company in the IT and telecommunications industry. Being a well accredited company, we have specialized in the field of various industrial training programs.

 

Modules:

  • Module1: Machine Learning
  • Introduction to Machine Learning & Predictive Modeling
  • Types of Business problems - Mapping of Techniques - Regression vs. classification vs. segmentation vs. Forecasting
  • Major Classes of Learning Algorithms -Supervised vs Unsupervised Learning
  • Different Phases of Predictive Modeling (Data Pre-processing, Sampling, Model Building, Validation)
  • Overfitting (Bias-Variance Trade off) & Performance Metrics
  • Feature engineering & dimension reduction
  • Concept of optimization & cost function
  • Overview of gradient descent algorithm
  • Overview of Cross validation(Bootstrapping, K-Fold validation etc)
  • Model performance metrics (R-square, Adjusted R-squre, RMSE, MAPE, AUC, ROC curve, recall, precision, sensitivity, specificity, confusion metrics )
  • Module2: Unsupervised Learning: Segmentation
  • What is segmentation & Role of ML in Segmentation?
  • Concept of Distance and related math background
  • K-Means Clustering
  • Expectation Maximization
  • Hierarchical Clustering
  • Spectral Clustering (DBSCAN)
  • Principle component Analysis (PCA)
  • Module 3: Decision Tree
  • Decision Trees - Introduction - Applications
  • Types of Decision Tree Algorithms
  • Construction of Decision Trees through Simplified Examples; Choosing the "Best" attribute at each Non-Leaf node; Entropy; Information Gain, Gini Index, Chi Square, Regression Trees
  • Generalizing Decision Trees; Information Content and Gain Ratio; Dealing with Numerical Variables; other Measures of Randomness
  • Pruning a Decision Tree; Cost as a consideration; Unwrapping Trees as Rules
  • Decision Trees - Validation
  • Overfitting - Best Practices to avoid
  • Module 4:Ensemble Learning (Supervised)
  • Concept of Ensembling
  • Manual Ensembling Vs. Automated Ensembling
  • Methods of Ensembling (Stacking, Mixture of Experts)
  • Bagging (Logic, Practical Applications)
  • Random forest (Logic, Practical Applications)
  • Boosting (Logic, Practical Applications)
  • Ada Boost
  • Gradient Boosting Machines (GBM)
  • XGBoost
  • Module 5:Artificial Neural Networks
  • Motivation for Neural Networks and Its Applications
  • Perceptron and Single Layer Neural Network, and Hand Calculations
  • Learning In a Multi Layered Neural Net: Back Propagation and Conjugant Gradient Techniques
  • Neural Networks for Regression
  • Neural Networks for Classification
  • Interpretation of Outputs and Fine tune the models with hyper parameters
  • Validating ANN models
  • Module 6: Support Vector Machines
  • Motivation for Support Vector Machine & Applications
  • Support Vector Regression
  • Support vector classifier (Linear & Non-Linear)
  • Mathematical Intuition (Kernel Methods Revisited, Quadratic Optimization and Soft Constraints)
  • Interpretation of Outputs and Fine tune the models with hyper parameters
  • Validating SVM models
  • Module 7: K-Nearest Neighbors Algorithm (KNN)
  • What is KNN & Applications?
  • KNN for missing treatment
  • KNN For solving regression problems
  • KNN for solving classification problems
  • Validating KNN model
  • Model fine tuning with hyper parameters
  • Module 8:Naïve Bayes
  • Concept of Conditional Probability
  • Bayes Theorem and Its Applications
  • Naïve Bayes for classification
  • Applications of Naïve Bayes in Classifications
  • Module 9: Data Mining
  • Taming big text, Unstructured vs. Semi-structured Data; Fundamentals of information retrieval, Properties of words; Creating Term-Document (TxD);Matrices; Similarity measures, Low-level processes (Sentence Splitting; Tokenization; Part-of-Speech Tagging; Stemming; Chunking)
  • Finding patterns in text: text mining, text as a graph
  • Natural Language processing (NLP)
  • Text Analytics – Sentiment Analysis using Python
  • Text Analytics – Word cloud analysis using Python
  • Text Analytics - Segmentation using K-Means/Hierarchical Clustering
  • Text Analytics - Classification (Spam/Not spam)
  • Applications of Social Media Analytics
  • Metrics(Measures Actions) in social media analytics
  • Examples & Actionable Insights using Social Media Analytics
  • Important python modules for Machine Learning (SciKit Learn, stats models, scipy, nltk etc)
  • Fine tuning the models using Hyper parameters, grid search, piping etc.
  • Module 10:Project work
  • Applying different algorithms to solve the business problems and bench mark the results
  • Chandigarh Branch

    TCIL-IT (ICS) S.C.O. 3017-18, Second Floor Opp. Kisan Bhavan (Bijwara Market), Chandigarh

© 2025 coursetakers.com All Rights Reserved. Terms and Conditions of use | Privacy Policy